
pmid: 14747466
The end-healing and end-sealing steps of the phage T4-induced RNA restriction-repair pathway are performed by two separate enzymes, a bifunctional polynucleotide 5'-kinase/3'-phosphatase and an ATP-dependent RNA ligase. Here we show that a single trifunctional baculovirus enzyme, RNA ligase 1 (Rnl1), catalyzes the identical set of RNA repair reactions. Three enzymatic activities of baculovirus Rnl1 are organized in a modular fashion within a 694-amino acid polypeptide consisting of an autonomous N-terminal RNA-specific ligase domain, Rnl1-(1-385), and a C-terminal kinase-phosphatase domain, Rnl1-(394-694). The ligase domain is itself composed of two functional units. The N-terminal module Rnl1-(1-270) contains essential nucleotidyltransferase motifs I, IV, and V and suffices for both enzyme adenylylation (step 1 of the ligation pathway) and phosphodiester bond formation at a preactivated RNA-adenylate end (step 3). The downstream module extending to residue 385 is required for ligation of a phosphorylated RNA substrate, suggesting that it is involved specifically in the second step of the end-joining pathway, the transfer of AMP from the ligase to the 5'-PO(4) end to form RNA-adenylate. The end-healing domain Rnl1-(394-694) consists of a proximal 5'-kinase module with an essential P-loop motif ((404)GSGKS(408)) and a distal 3'-phosphatase module with an essential acylphosphatase motif ((560)DLDGT(564)). Our findings have implications for the evolution of RNA repair systems and their potential roles in virus-host dynamics.
Polyribonucleotide Nucleotidyltransferase, Phosphotransferases (Phosphate Group Acceptor), RNA Ligase (ATP), Hydrogen-Ion Concentration, Protein Structure, Tertiary, Viral Proteins, Adenosine Triphosphate, Metals, Multienzyme Complexes, RNA, Amino Acid Sequence, Cloning, Molecular, Baculoviridae, Sequence Alignment
Polyribonucleotide Nucleotidyltransferase, Phosphotransferases (Phosphate Group Acceptor), RNA Ligase (ATP), Hydrogen-Ion Concentration, Protein Structure, Tertiary, Viral Proteins, Adenosine Triphosphate, Metals, Multienzyme Complexes, RNA, Amino Acid Sequence, Cloning, Molecular, Baculoviridae, Sequence Alignment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
