Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cell Signaling Microdomain with Na,K-ATPase and Inositol 1,4,5-Trisphosphate Receptor Generates Calcium Oscillations

Authors: Katsuhiko Mikoshiba; Mark Lal; Ayako Miyakawa-Naito; Per Uhlén; Oleg Aizman; Sergey Zelenin; Anita Aperia; +1 Authors

Cell Signaling Microdomain with Na,K-ATPase and Inositol 1,4,5-Trisphosphate Receptor Generates Calcium Oscillations

Abstract

Recent studies indicate novel roles for the ubiquitous ion pump, Na,K-ATPase, in addition to its function as a key regulator of intracellular sodium and potassium concentration. We have previously demonstrated that ouabain, the endogenous ligand of Na,K-ATPase, can trigger intracellular Ca2+ oscillations, a versatile intracellular signal controlling a diverse range of cellular processes. Here we report that Na,K-ATPase and inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) form a cell signaling microdomain that, in the presence of ouabain, generates slow Ca2+ oscillations in renal cells. Using fluorescent resonance energy transfer (FRET) measurements, we detected a close spatial proximity between Na,K-ATPase and InsP3R. Ouabain significantly enhanced FRET between Na,K-ATPase and InsP3R. The FRET effect and ouabain-induced Ca2+ oscillations were not observed following disruption of the actin cytoskeleton. Partial truncation of the NH2 terminus of Na,K-ATPase catalytic alpha1-subunit abolished Ca2+ oscillations and downstream activation of NF-kappaB. Ouabain-induced Ca2+ oscillations occurred in cells expressing an InsP3 sponge and were hence independent of InsP3 generation. Thus, we present a novel principle for a cell signaling microdomain where an ion pump serves as a receptor.

Keywords

Ions, Microscopy, Confocal, Green Fluorescent Proteins, Molecular Sequence Data, NF-kappa B, Immunohistochemistry, Cell Line, Luminescent Proteins, Microscopy, Fluorescence, Oscillometry, COS Cells, Fluorescence Resonance Energy Transfer, Animals, Inositol 1,4,5-Trisphosphate Receptors, Calcium, Amino Acid Sequence, Calcium Channels, Cloning, Molecular, Cytoskeleton, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 10%
Top 10%
gold