Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rho Isoform-specific Interaction with IQGAP1 Promotes Breast Cancer Cell Proliferation and Migration

Authors: Darren E, Casteel; Stephanie, Turner; Raphaela, Schwappacher; Hema, Rangaswami; Jacqueline, Su-Yuo; Shunhui, Zhuang; Gerry R, Boss; +1 Authors

Rho Isoform-specific Interaction with IQGAP1 Promotes Breast Cancer Cell Proliferation and Migration

Abstract

We performed a proteomics screen for Rho isoform-specific binding proteins to clarify the tumor-promoting effects of RhoA and C that contrast with the tumor-suppressive effects of RhoB. We found that the IQ-motif-containing GTPase-activating protein IQGAP1 interacts directly with GTP-bound, prenylated RhoA and RhoC, but not with RhoB. Co-immunoprecipitation of IQGAP1 with endogenous RhoA/C was enhanced when RhoA/C were activated by epidermal growth factor (EGF) or transfection of a constitutively active guanine nucleotide exchange factor (GEF). Overexpression of IQGAP1 increased GTP-loading of RhoA/C, while siRNA-mediated depletion of IQGAP1 prevented endogenous RhoA/C activation by growth factors. IQGAP1 knockdown also reduced the amount of GTP bound to GTPase-deficient RhoA/C mutants, suggesting that IQGAP enhances Rho activation by GEF(s) or stabilizes Rho-GTP. IQGAP1 depletion in MDA-MB-231 breast cancer cells blocked EGF- and RhoA-induced stimulation of DNA synthesis. Infecting cells with adenovirus encoding constitutively active RhoA(L63) and measuring absolute amounts of RhoA-GTP in infected cells demonstrated that the lack of RhoA(L63)-induced DNA synthesis in IQGAP1-depleted cells was not due to reduced GTP-bound RhoA. These data suggested that IQGAP1 functions downstream of RhoA. Overexpression of IQGAP1 in MDA-MB-231 cells increased DNA synthesis irrespective of siRNA-mediated RhoA knockdown. Breast cancer cell motility was increased by expressing a constitutively-active RhoC(V14) mutant or overexpressing IQGAP1. EGF- or RhoC-induced migration required IQGAP1, but IQGAP1-stimulated migration independently of RhoC, placing IQGAP1 downstream of RhoC. We conclude that IQGAP1 acts both upstream of RhoA/C, regulating their activation state, and downstream of RhoA/C, mediating their effects on breast cancer cell proliferation and migration, respectively.

Keywords

Proteomics, rho GTP-Binding Proteins, Blotting, Western, Protein Prenylation, Breast Neoplasms, Binding, Competitive, HEK293 Cells, Cell Movement, ras GTPase-Activating Proteins, rhoC GTP-Binding Protein, Cell Line, Tumor, Humans, Immunoprecipitation, Female, RNA Interference, Guanosine Triphosphate, rhoA GTP-Binding Protein, rhoB GTP-Binding Protein, Cell Proliferation, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research