Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metabolism of Pentose Sugars in the Hyperthermophilic Archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius

Authors: Michael J. Danson; Peter Schönheit; David W. Hough; Tobias Fuhrer; Uwe Sauer; Charlotte E.M. Nunn; Ulrike Johnsen;

Metabolism of Pentose Sugars in the Hyperthermophilic Archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius

Abstract

We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, D-xylose and L-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of D-xylose and L-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.

Related Organizations
Keywords

Sulfolobus acidocaldarius, Citric Acid Cycle, Carbohydrates, Malate Synthase, Archaea, Isocitrate Lyase, Models, Biological, Recombinant Proteins, Oxygen, Alcohol Oxidoreductases, Acetyl Coenzyme A, Sulfolobus solfataricus, Gene Expression Regulation, Archaeal, Phosphorylation, Hydro-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
gold