Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Vacuolar Proton-translocating ATPase Activity and Assembly by Extracellular pH

Authors: Theodore T. Diakov; Patricia M. Kane;

Regulation of Vacuolar Proton-translocating ATPase Activity and Assembly by Extracellular pH

Abstract

Vacuolar proton-translocating ATPases (V-ATPases) are responsible for organelle acidification in all eukaryotic cells. The yeast V-ATPase, known to be regulated by reversible disassembly in response to glucose deprivation, was recently reported to be regulated by extracellular pH as well (Padilla-López, S., and Pearce, D. A. (2006) J. Biol. Chem. 281, 10273-10280). Consistent with those results, we find 57% higher V-ATPase activity in vacuoles isolated after cell growth at extracellular pH of 7 than after growth at pH 5 in minimal medium. Remarkably, under these conditions, the V-ATPase also becomes largely insensitive to reversible disassembly, maintaining a low vacuolar pH and high levels of V(1) subunit assembly, ATPase activity, and proton pumping during glucose deprivation. Cytosolic pH is constant under these conditions, indicating that the lack of reversible disassembly is not a response to altered cytosolic pH. We propose that when alternative mechanisms of vacuolar acidification are not available, maintaining V-ATPase activity becomes a priority, and the pump is not down-regulated in response to energy limitation. These results also suggest that integrated pH and metabolic inputs determine the final assembly state and activity of the V-ATPase.

Keywords

Vacuolar Proton-Translocating ATPases, Time Factors, Cell Membrane, Fungi, Hydrogen-Ion Concentration, Models, Biological, Gene Expression Regulation, Enzymologic, Kinetics, Cytosol, Glucose, Mutation, Vacuoles, Protons, Fluorescent Antibody Technique, Indirect

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
gold