Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Bone Morphogenetic Protein-15 Inhibits Follicle-stimulating Hormone (FSH) Action by Suppressing FSH Receptor Expression

Authors: F, Otsuka; S, Yamamoto; G F, Erickson; S, Shimasaki;

Bone Morphogenetic Protein-15 Inhibits Follicle-stimulating Hormone (FSH) Action by Suppressing FSH Receptor Expression

Abstract

We have recently reported that oocyte-derived bone morphogenetic protein-15 (BMP-15) can directly modulate follicle-stimulating hormone (FSH) action in rat granulosa cells. Here, we investigate underlying mechanisms of this BMP-15 effect. Treatment with BMP-15 alone exerted no significant effect on the basal expression of mRNAs encoding steroidogenic acute regulatory protein, P450 side chain cleavage enzyme, P450 aromatase, 3beta-hydroxysteroid dehydrogenase, luteinization hormone receptor, and inhibin/activin subunits. However, BMP-15 markedly inhibited the FSH-induced increases in these messages. In striking contrast, BMP-15 did not change the forskolin-induced levels of these transcripts. Thus, the inhibitory effect of BMP-15 on FSH action must be upstream of cAMP signaling. We next examined changes in FSH receptor mRNA expression. Interestingly, BMP-15 severely reduced the levels of FSH receptor mRNA in both basal and FSH-stimulated cells. To determine whether this effect was at the level of FSH function, we investigated the effect of BMP-15 on FSH bioactivity. Consistent with the mRNA data, BMP-15 inhibited the biological response of FSH, but not that of forskolin. Based on these results, we propose that BMP-15 is an important determinant of FSH action through its ability to inhibit FSH receptor expression. Because FSH plays an essential role in follicle growth and development, our findings could have new implications for understanding how oocyte growth factors contribute to folliculogenesis.

Keywords

Granulosa Cells, Growth Differentiation Factor 9, Rats, Rats, Sprague-Dawley, Animals, Intercellular Signaling Peptides and Proteins, Receptors, FSH, Female, Follicle Stimulating Hormone, Bone Morphogenetic Protein 15, Growth Substances, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    272
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
272
Top 10%
Top 1%
Top 1%
gold