Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of a Novel Isoform of Caspase-9 That Inhibits Apoptosis

Authors: An-Suei Yang; Thomas F. Franke; James M. Angelastro; Nah Yong Moon; David Liu; Lloyd A. Greene;

Characterization of a Novel Isoform of Caspase-9 That Inhibits Apoptosis

Abstract

We have identified a novel isoform of rat caspase-9 in which the C terminus of full-length caspase-9 is replaced with an alternative peptide sequence. Casp-9-CTD (where CTD is carboxyl-terminal divergent) is expressed in multiple tissues, with the relative highest expression observed in ovary and heart. Casp-9-CTD was found primarily in the cytoplasm and was not detected in the nucleus. Structural predictions suggest that in contrast to full-length caspase-9, casp-9-CTD will not be processed. Our model is supported by reduced protease activity of casp-9-CTD preparations in vitro and by the lack of detectable processing of casp-9-CTD proenzyme or the induction of cell death following transfection into cells. Both neuronal and non-neuronal cell types transfected with casp-9-CTD were resistant to death evoked by trophic factor deprivation or DNA damage. In addition, cytosolic lysates prepared from cells permanently expressing exogenous casp-9-CTD were resistant to caspase induction by cytochrome c in reconstitution assays. Taken together, our observations indicate that casp-9-CTD acts as a dominant-negative variant. Its expression in various tissues indicates a physiological role in regulating cell death.

Related Organizations
Keywords

Base Sequence, Caspase 3, Molecular Sequence Data, Apoptosis, DNA, PC12 Cells, Caspase 9, Recombinant Proteins, Cell Line, Rats, Substrate Specificity, Enzyme Activation, Caspases, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%
gold