Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Urokinase/Urokinase Receptor Interaction by Heparin-like Glycosaminoglycans

Authors: PUCCI, MARCO; FIBBI, GABRIELLA; MAGNELLI, LUCIA; DEL ROSSO, MARIO;

Regulation of Urokinase/Urokinase Receptor Interaction by Heparin-like Glycosaminoglycans

Abstract

We show here that the interaction between the urokinase-type plasminogen activator and its receptor, which plays a critical role in cell invasion, is regulated by heparan sulfate present on the cell surface and in the extracellular matrix. Heparan sulfate oligomers showing a composition close to the dimeric repeats of heparin (glucosamine-NSO(3)(6-OSO(3))-iduronic acid(2-OSO(3))) n = 5 and n > 5, where iduronic acid may alternate with glucuronic acid, exhibit affinity for urokinase plasminogen activator and confer specificity on urokinase/urokinase receptor interaction. Cell surface clearance of heparan sulfate reduces the affinity of such interaction with a parallel decrease of specific urokinase binding in the presence of an unaltered expression of receptor. Transfection of human urokinase plasminogen activator receptor in normal Chinese hamster ovary fibroblasts and in Chinese hamster ovary cells defective for the synthesis of sulfated glycosaminoglycans results in specific urokinase/receptor interaction only in nondefective cells. Heparan sulfate/urokinase and receptor/urokinase interactions exhibit similar K(d) values. We concluded that heparan sulfate functions as an adaptor molecule that confers specificity on urokinase/receptor binding.

Related Organizations
Keywords

Receptors, Cell Surface, CHO Cells, Transfection, Urokinase-Type Plasminogen Activator, Chromatography, Affinity, Receptors, Urokinase Plasminogen Activator, Cricetinae, Chlorates, Animals, Humans, Proteoglycans, Heparitin Sulfate, Cells, Cultured, Glycosaminoglycans, Polysaccharide-Lyases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
gold