
pmid: 10801844
The optimally efficient production of thrombin by the prothrombinase complex relies on suitable positioning of its component factors and substrate on phosphatidylserine-containing lipid membranes. The presence of oxidatively damaged phospholipids in a membrane disrupts the normal architecture of a lipid bilayer and might therefore be expected to interfere with prothrombinase activity. To investigate this possibility, we prepared phosphatidylserine-containing lipid vesicles containing oxidized arachidonoyl lipids, and we examined their ability to accelerate thrombin production by prothrombinase. Oxidized arachidonoyl chains caused dose-dependent increases in prothrombinase activity up to 6-fold greater than control values. These increases were completely attenuated by the presence of alpha-tocopherol, gamma-tocopherol, or ascorbate. Over the course of a 300-min oxidation, the ability of arachidonoyl lipids to accelerate prothrombinase peaked at 60 min and then declined to base-line levels. These results suggest that instead of being impeded by oxidative membrane damage, prothrombinase activity is enhanced by one or more products of nonenzymatic lipid oxidation.
Kinetics, Membrane Lipids, Oxidation-Reduction, Mass Spectrometry, Phospholipids, Thromboplastin
Kinetics, Membrane Lipids, Oxidation-Reduction, Mass Spectrometry, Phospholipids, Thromboplastin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
