Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Region in Domain II of the Urokinase Receptor Required for Urokinase Binding

Authors: K, Bdeir; A, Kuo; A, Mazar; B S, Sachais; W, Xiao; S, Gawlak; S, Harris; +2 Authors

A Region in Domain II of the Urokinase Receptor Required for Urokinase Binding

Abstract

The urokinase receptor is composed of three homologous domains based on disulfide spacing. The contribution of each domain to the binding and activation of single chain urokinase (scuPA) remains poorly understood. In the present paper we examined the role of domain II (DII) in these processes. Repositioning DII to the amino or carboxyl terminus of the molecule abolished binding of scuPA as did deleting the domain entirely. By using alanine-scanning mutagenesis, we identified a 9-amino acid continuous sequence in DII (Arg(137)-Arg(145)) required for both activities. Competition-inhibition and surface plasmon resonance studies demonstrated that mutation of Lys(139) and His(143) to alanine in soluble receptor (suPAR) reduced the affinity for scuPA approximately 5-fold due to an increase in the "off rate." Mutation of Arg(137), Arg(142), and Arg(145), each to alanine, leads to an approximately 100-fold decrease in affinity attributable to a 10-fold decrease in the apparent "on rate" and a 6-fold increase in off rate. These differences were confirmed on cells expressing variant urokinase receptor. suPAR-K139A/H143A displayed a 50% reduction in scuPA-mediated plasminogen activation activity, whereas the 3-arginine variant was unable to stimulate scuPA activity at all. Mutation of the three arginines did not affect binding of a decamer peptide antagonist of scuPA known to interact with DI and DIII. However, this mutation abolished both the binding of soluble DI to DII-III in the presence of scuPA and the synergistic activation of scuPA mediated by DI and wild type DII-DIII. These data show that DII is required for high affinity binding of scuPA and its activation. DII does not serve merely as a spacer function but appears to be required for interdomain cooperativity.

Related Organizations
Keywords

Binding Sites, Cricetinae, Mutation, Animals, Receptors, Cell Surface, CHO Cells, Urokinase-Type Plasminogen Activator, Receptors, Urokinase Plasminogen Activator

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
gold