Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1999 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mutational Analysis of the Binding Site Residues of the Bovine Cation-dependent Mannose 6-Phosphate Receptor

Authors: L J, Olson; M K, Hancock; D, Dix; J J, Kim; N M, Dahms;

Mutational Analysis of the Binding Site Residues of the Bovine Cation-dependent Mannose 6-Phosphate Receptor

Abstract

Mannose 6-phosphate receptors (MPRs) deliver soluble acid hydrolases to the lysosome in higher eukaryotic cells. The two MPRs, the cation-dependent MPR (CD-MPR) and the insulin-like growth factor II/cation-independent MPR, carry out this process by binding with high affinity to mannose 6-phosphate residues found on the N-linked oligosaccharides of their ligands. To elucidate the key amino acids involved in conveying this carbohydrate specificity, site-directed mutagenesis studies were conducted on the extracytoplasmic domain of the bovine CD-MPR. Single amino acid substitutions of the residues that form the binding pocket were generated, and the mutant constructs were expressed in transiently transfected COS-1 cells. Following metabolic labeling, mutant CD-MPRs were tested for their ability to bind pentamannosyl phosphate-containing affinity columns. Of the eight amino acids mutated, four (Gln-66, Arg-111, Glu-133, and Tyr-143) were found to be essential for ligand binding. In addition, mutation of the single histidine residue, His-105, within the binding site diminished the binding of the receptor to ligand, but did not eliminate the ability of the CD-MPR to release ligand under acidic conditions.

Related Organizations
Keywords

Structure-Activity Relationship, Binding Sites, COS Cells, Molecular Sequence Data, Mutagenesis, Site-Directed, Animals, Cattle, Amino Acid Sequence, Hydrogen-Ion Concentration, Receptor, IGF Type 2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
gold