Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1999 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trafficking of M2 Muscarinic Acetylcholine Receptors

Authors: Aaron G. Roseberry; M. Marlene Hosey;

Trafficking of M2 Muscarinic Acetylcholine Receptors

Abstract

Internalization is an important mechanism regulating the agonist-dependent responses of G-protein-coupled receptors. The internalization of the M(2) muscarinic cholinergic receptors (mAChR) in HEK293 cells has been demonstrated to occur by an unknown mechanism that is independent of arrestins and dynamin. In this study we examined various aspects of the trafficking of the M(2) mAChR in HEK293 cells to characterize this unknown pathway of internalization. Internalization of the M(2) mAChR was rapid and extensive, but prolonged incubation with agonist did not lead to appreciable down-regulation (a decrease in total receptor number) of the receptors. Recovery of M(2) mAChRs to the cell surface following agonist-mediated internalization was a very slow process that contained protein synthesis-dependent and -independent components. The protein synthesis-dependent component of the recovery of receptors to the cell surface did not appear to reflect a requirement for synthesis of new receptors, as no changes in total receptor number were observed either in the presence or absence of cycloheximide. Phosphorylation of the M(2) mAChR did not appear to influence the rate or extent of the recovery of receptors to the cell surface, as the recovery of a phosphorylation-deficient mutant M(2) mAChR, the N,C(Ala-8) mutant, was similar to the recovery of the wild type M(2) mAChR. Finally, the constitutive, nonagonist-dependent internalization and recycling of the M(2) mAChR was very slow and also contained protein synthesis-dependent and -independent components, suggesting that a similar pathway controls the recovery from agonist-dependent and -independent internalization. Overall, these data demonstrated a variety of previously unappreciated facets involved in the regulation of M(2) mAChRs.

Related Organizations
Keywords

Down-Regulation, Humans, Muscarinic Agonists, Receptors, Muscarinic, Endocytosis, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
gold