Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adenine Nucleoside 3′-Tetraphosphates Are Novel and Potent Inhibitors of Adenylyl Cyclases

Authors: L, Désaubry; R A, Johnson;

Adenine Nucleoside 3′-Tetraphosphates Are Novel and Potent Inhibitors of Adenylyl Cyclases

Abstract

2'-Deoxyadenosine 3'-tetraphosphate (2'-deoxy-3'-A4P) and 2', 5'-dideoxyadenosine 3'-tetraphosphate (2',5'-dideoxy-3'-A4P) were synthesized, and their effects were tested on crude and purified forms of native adenylyl cyclases isolated from brain. Syntheses combined the method of alkoxide activation with the use of tribromoethyl phosphoromorpholino-chloridate as an initial phosphorylating agent. Inhibition of adenylyl cyclase was rapid in onset. With 2'-d-3'-A4P or 2',5'-dd-3'-A4P inhibition of a purified native enzyme conformed to a linear noncompetitive behavior with respect to substrate, metal-5'ATP. Order of potency was 2', 5'-dideoxy- > 2'-deoxyadenosine and 3'-tetraphosphate > 3'-triphosphate. Both mechanism of inhibition and rank order of potency were consistent with inhibition via the 3'-nucleotide-(P)-site on adenylyl cyclase. Neither 2',5'-dd-3'-ATP nor 2',5'-dd-3'-A4P had any effect on the activities of other adenosine nucleotide binding proteins such as Ca2+/calmodulin-sensitive cyclic nucleotide phosphodiesterase, Na+/K+-ATPase, or cAMP-dependent protein kinase. With purified adenylyl cyclase from bovine brain 2',5'-dd-3'-A4P and 2'-d-3'-A4P gave, respectively, IC50 values of 9.3 and 15 nM and Ki values of 23 and 53 nM. These 3'-nucleotides are the most potent regulators described for adenylyl cyclases.

Keywords

Binding Sites, Phosphoric Diester Hydrolases, Brain, Cyclic Nucleotide Phosphodiesterases, Type 1, Cyclic AMP-Dependent Protein Kinases, Rats, Kinetics, Structure-Activity Relationship, Deoxyadenine Nucleotides, 3',5'-Cyclic-AMP Phosphodiesterases, 3',5'-Cyclic-GMP Phosphodiesterases, Adenylyl Cyclase Inhibitors, Animals, Cattle, Indicators and Reagents, Sodium-Potassium-Exchanging ATPase, Adenylyl Cyclases, Dideoxynucleotides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
gold