
pmid: 9556595
The amyloid precursor superfamily is composed of three highly conserved transmembrane glycoproteins, the amyloid precursor protein (APP) and amyloid precursor-like proteins 1 and 2 (APLP1, APLP2), whose functions are unknown. Proteolytic cleavage of APP yields the betaA4 peptide, the major component of cerebral amyloid in Alzheimer's disease. Here we show that five post-translationally modified, full-length species of APP and APLP2 (but not APLP1) arrive at the mature presynaptic terminal in the fastest wave of axonal transport and are subsequently rapidly cleared (mean half-life of 3.5 h). Rapid turnover of presynaptic APP and APLP2 occurs independently of visual activity. Turnover of the most rapidly arriving APP species was accompanied by a delayed accumulation of a 120-kDa, APP fragment lacking the C terminus, consistent with presynaptic APP turnover via constitutive proteolysis. Turnover of APLP2 was not accompanied by detectable APLP2 fragment peptides, suggesting either that APLP2 either is more rapidly degraded than is APP or is retrogradely transported shortly after reaching the terminus. A single 150-kDa APLP2 species containing the Kunitz protease inhibitor domain is the major amyloid precursor superfamily protein transported to the presynapse. Presynaptic APP and APLP2 are sialylated and N- and O-glycosylated, and some also carry chondroitin sulfate glycosaminoglycan and/or dermatan sulfate glycosaminoglycan. The rapid kinetics for turnover of APP and APLP2 predict a sensitive balance of synthesis, transport, and elimination rates that may be critical to normal neuronal functions and metabolic fates of these proteins.
Central Nervous System, Glycosylation, Mesocricetus, Presynaptic Terminals, Biological Transport, Amyloid beta-Protein Precursor, Kinetics, Alzheimer Disease, Cricetinae, Animals, Protein Processing, Post-Translational
Central Nervous System, Glycosylation, Mesocricetus, Presynaptic Terminals, Biological Transport, Amyloid beta-Protein Precursor, Kinetics, Alzheimer Disease, Cricetinae, Animals, Protein Processing, Post-Translational
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
