Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Identification of Hyaluronan-binding Domains of Aggrecan

Authors: H, Watanabe; S C, Cheung; N, Itano; K, Kimata; Y, Yamada;

Identification of Hyaluronan-binding Domains of Aggrecan

Abstract

Aggrecan, a large cartilage proteoglycan, interacts with hyaluronan (HA), to form aggregates which function to resist compression in joints. The N-terminal region of aggrecan contains two structurally related globular domains, G1 and G2 separated by IGD domain. The G1 domain consists of three subdomains, A, B, and B', structural features characteristic to many other HA-binding proteoglycans. Here, we studied the interaction of aggrecan domains with HA using recombinant proteins expressed in 293 cells, an embryonal kidney cell line. Deglycosylation of the recombinant aggrecan fragment reduced the HA binding activity. We found that both the B and B' subdomains were required for HA binding and that a single module of A, B, or B' was unable to bind HA. The A subdomain increased the HA binding activity of the B-B' region. The G2 domain had no HA binding activity confirming previous reports. Studies of HA-binding properties using a BIAcoreTM biosensor system revealed that the KD of recombinant aggrecan fragment (AgW) consisting of G1, IGD, and G2 was 0.226 microM, whereas the KD of another HA-binding protein, native bovine link protein, is 0.089 microM. In contrast, AgMut11 which lacked subdomain A showed little HA binding activity. AgMut12 consisting of only B-B' had a 3.4-fold lower affinity and AgMut13 containing A-B-B' was 1.5-fold lower than AgW. These results suggest that carbohydrates are essential for high level aggrecan binding to HA and that the A subdomain of aggrecan functions in a cooperative manner with subdomains B and B'.

Keywords

Extracellular Matrix Proteins, Glycosylation, Humans, Lectins, C-Type, Proteoglycans, Aggrecans, Hyaluronic Acid, Recombinant Proteins, Cell Line, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
gold