Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure of Aquaporin-2 Vasopressin Water Channel

Authors: L, Bai; K, Fushimi; S, Sasaki; F, Marumo;

Structure of Aquaporin-2 Vasopressin Water Channel

Abstract

Aquaporin-2 (AQP-2) is a vasopressin-regulated water channel in the kidney collecting duct. AQP-2 is selectively permeable to water molecule and is translocated between the apical membrane and subapical endosomes in response to vasopressin. To investigate the localization and structure of the aqueous pathway of the AQP-2 water channel, a series of site-directed mutants was constructed and functionally analyzed. Insertion of N-glycosylation reporter sequence into each hydrophilic loop (HL) indicated that AQP-2 has a six-membrane spanning topology and that insertional mutations in HL-2 or HL-5 do not alter water channel function. Mercury-sensitive site of AQP-2 is located near the second asparagine-proline-alanine (NPA) domain at cysteine 181, but not near the first NPA domain. Replacement of HL-3 or HL-4 with the corresponding part of Escherichia coli glycerol facilitator abolished water channel function without changing plasma membrane expression of the channel protein. Introduction of cysteine residues in His-122, Asn-123, Gly-154, Asp-155, or Asn-156 induced partial mercury sensitivity, and point mutations in asparagine 123 significantly altered water permeability. Our results implicate that the structure of AQP-2 is different from models previously proposed for AQP-1 and that HL-3 and HL-4 are closely located to the aqueous pathway.

Related Organizations
Keywords

Kidney Medulla, Aquaporin 2, Cell Membrane Permeability, Glycosylation, Glycoside Hydrolases, Molecular Sequence Data, Aquaporins, Polymerase Chain Reaction, Aquaporin 6, Ion Channels, Protein Structure, Secondary, Rats, Models, Structural, Mercuric Chloride, Mutagenesis, Site-Directed, Oocytes, Animals, Electrophoresis, Polyacrylamide Gel, Female, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 1%
gold