
pmid: 8662700
Lipoic acid is a prosthetic group of the acyltransferase components of the pyruvate, alpha-ketoglutarate, and branched chain alpha-ketoacid dehydrogenase complexes, protein X of the eukaryotic pyruvate dehydrogenase complex, and H-protein of the glycine cleavage system. We have purified lipoyl-AMP:Nepsilon-lysine lipoyltransferase I and II from bovine liver mitochondria employing apoH-protein as an acceptor of lipoic acid (Fujiwara, K., Okamura-Ikeda, K., and Motokawa, Y. (1994) J. Biol. Chem. 269, 16605-16609). In this study, we demonstrated the lipoylation of the lipoyl domains of the mammalian pyruvate (LE2p), alpha-ketoglutarate (LE2k), and branched chain alpha-keto acid (LE2b) dehydrogenase complexes using the purified lipoyltransferase I and II. Lipoyltransferase I and II lipoylated LE2p and LE2k as efficiently as H-protein, but the lipoylation rate of LE2b was extremely low. Comparison of amino acid sequences surrounding the lipoylation site of these proteins shows that the conserved glutamic acid residue situated 3 residues to the N-terminal side of the lipoylation site is replaced by glutamine (Gln-41) in LE2b. When Gln-41 of LE2b was changed to Glu, the rate of lipoylation increased about 100-fold and became comparable to that of LE2p and LE2k. The replacement of the glutamic acid residue of LE2p (Glu-169) and LE2k (Glu-40) by glutamine resulted in decrease in the lipoylation rate more than 100-fold. These results suggest that the glutamic acid residue plays an important role in the lipoylation reaction possibly functioning as a recognition signal. Gly-27 and Gly-54 of LE2k are also well conserved among the lipoyl domains of the alpha-ketoacid dehydrogenase complexes and H-protein. The mutagenesis experiments of these residues indicated that the glycine residue situated 11 residues to the C-terminal side of the lipoylation site (Gly-54 of LE2k) is important for the folding of lipoyl domain, and that existence of a small residue such as Gly or Cys at the position is essential for the lipoylation of these proteins.
DNA, Complementary, Base Sequence, Thioctic Acid, Lysine, Molecular Sequence Data, Glycine, Glutamic Acid, Ketone Oxidoreductases, Mitochondria, Liver, 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide), Multienzyme Complexes, Mutagenesis, Site-Directed, Animals, Cattle, Cloning, Molecular, Acyltransferases, Conserved Sequence
DNA, Complementary, Base Sequence, Thioctic Acid, Lysine, Molecular Sequence Data, Glycine, Glutamic Acid, Ketone Oxidoreductases, Mitochondria, Liver, 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide), Multienzyme Complexes, Mutagenesis, Site-Directed, Animals, Cattle, Cloning, Molecular, Acyltransferases, Conserved Sequence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
