Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Divergent Mechanisms for Homologous Desensitization of p21 by Insulin and Growth Factors

Authors: Klarlund, Jes K.; Cherniack, Andrew D.; Czech, Michael P.;

Divergent Mechanisms for Homologous Desensitization of p21 by Insulin and Growth Factors

Abstract

Previous work suggested that desensitization of p21ras in response to growth factors such as epidermal growth factor (EGF) results from receptor down-regulation. Here we show that p21ras is desensitized by insulin in 3T3-L1 adipocytes in the continued presence of activated insulin receptors, while loss of epidermal growth factor and platelet-derived growth factor (PDGF) receptors in response to their ligands correlates with p21ras desensitization. Furthermore, elevated amounts of Grb2/Shc complexes persisted throughout p21ras desensitization by insulin. However, immunoblotting of anti-Son-of-sevenless (Sos) 1 and 2 immunoprecipitates with anti-Grb2 antisera revealed that p21ras desensitization in response to insulin and PDGF, but not EGF, is associated with a marked decrease in cellular complexes containing Sos and Grb2 proteins. Nonetheless, the desensitization of p21ras in response to these stimuli was homologous, in that each peptide could reactivate [32P]GTP loading of p21ras after desensitization by any of the others. Taken together, these data indicate that insulin, EGF, and PDGF all cause disassembly of Sos proteins from signaling complexes during p21ras desensitization, but at least two mechanisms are involved. Insulin elicits dissociation of Sos from Grb2 SH3 domains, whereas EGF signaling is reversed by receptor down-regulation and Shc dephosphorylation, releasing Grb2 SH2 domains. PDGF action triggers both mechanisms of Grb2 disassembly, which probably operate in concert with GAP to attenuate p21ras signaling.

Country
United States
Keywords

Platelet-Derived Growth Factor, Epidermal Growth Factor, Signal Transducing, Life Sciences, Membrane Proteins, Proteins, 3T3 Cells, Proto-Oncogene Proteins p21(ras), Mice, Son of Sevenless Proteins, Medicine and Health Sciences, *Adaptor Proteins, Animals, Insulin, Guanosine Triphosphate, Adaptor Proteins, Signal Transducing, GRB2 Adaptor Protein, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
gold