Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The β-Adrenergic Receptor Kinase (GRK2) Is Regulated by Phospholipids

Authors: Yu Liu; Jeffrey L. Benovic; James J. Onorato; Mary E. Gillis; Arnold E. Ruoho;

The β-Adrenergic Receptor Kinase (GRK2) Is Regulated by Phospholipids

Abstract

The beta-adrenergic receptor kinase (beta ARK) is a member of growing family of G protein coupled receptor kinases (GRKs). beta ARK and other members of the GRK family play a role in the mechanism of agonist-specific desensitization by virtue of their ability to phosphorylate G protein-coupled receptors in an agonist-dependent manner. beta ARK activation is known to occur following the interaction of the kinase with the agonist-occupied form of the receptor substrate and heterotrimeric G protein beta gamma subunits. Recently, lipid regulation of GRK2, GRK3, and GRK5 have also been described. Using a mixed micelle assay, GRK2 (beta ARK1) was found to require phospholipid in order to phosphorylate the beta 2-adrenergic receptor. As determined with a nonreceptor peptide substrate of beta ARK, catalytic activity of the kinase increased in the presence of phospholipid without a change in the Km for the peptide. Data obtained with the heterobifunctional cross-linking agent N-3-[125I]iodo-4-azidophenylpropionamido-S-(2-thiopyridyl)-c ysteine ([125I]ACTP) suggests that the activation by phospholipid was associated with a conformational change in the kinase. [125I]ACTP incorporation increased 2-fold in the presence of crude phosphatidylcholine, and this increase in [125I]ACTP labeling is completely blocked by the addition of MgATP. Furthermore, proteolytic mapping was consistent with the modification of a distinct site when GRK2 was labeled in the presence of phospholipid. While an acidic phospholipid specificity was demonstrated using the mixed micelle phosphorylation assay, a notable exception was observed with PIP2. In the presence of PIP2, kinase activity as well as [125I]ACTP labeling was inhibited. These data demonstrate the direct regulation of GRK2 activity by phospholipids and supports the hypothesis that this effect is the result of a conformational change within the kinase.

Keywords

Azides, Protein Conformation, Cell Membrane, Molecular Sequence Data, Spodoptera, Cyclic AMP-Dependent Protein Kinases, Catalysis, Cell Line, Substrate Specificity, Enzyme Activation, Iodine Radioisotopes, Cross-Linking Reagents, beta-Adrenergic Receptor Kinases, Cricetinae, Animals, Amino Acid Sequence, Cloning, Molecular, Baculoviridae, Phospholipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Average
Top 10%
Top 10%
gold