<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 7673171
The beta-adrenergic receptor kinase (beta ARK) is a member of growing family of G protein coupled receptor kinases (GRKs). beta ARK and other members of the GRK family play a role in the mechanism of agonist-specific desensitization by virtue of their ability to phosphorylate G protein-coupled receptors in an agonist-dependent manner. beta ARK activation is known to occur following the interaction of the kinase with the agonist-occupied form of the receptor substrate and heterotrimeric G protein beta gamma subunits. Recently, lipid regulation of GRK2, GRK3, and GRK5 have also been described. Using a mixed micelle assay, GRK2 (beta ARK1) was found to require phospholipid in order to phosphorylate the beta 2-adrenergic receptor. As determined with a nonreceptor peptide substrate of beta ARK, catalytic activity of the kinase increased in the presence of phospholipid without a change in the Km for the peptide. Data obtained with the heterobifunctional cross-linking agent N-3-[125I]iodo-4-azidophenylpropionamido-S-(2-thiopyridyl)-c ysteine ([125I]ACTP) suggests that the activation by phospholipid was associated with a conformational change in the kinase. [125I]ACTP incorporation increased 2-fold in the presence of crude phosphatidylcholine, and this increase in [125I]ACTP labeling is completely blocked by the addition of MgATP. Furthermore, proteolytic mapping was consistent with the modification of a distinct site when GRK2 was labeled in the presence of phospholipid. While an acidic phospholipid specificity was demonstrated using the mixed micelle phosphorylation assay, a notable exception was observed with PIP2. In the presence of PIP2, kinase activity as well as [125I]ACTP labeling was inhibited. These data demonstrate the direct regulation of GRK2 activity by phospholipids and supports the hypothesis that this effect is the result of a conformational change within the kinase.
Azides, Protein Conformation, Cell Membrane, Molecular Sequence Data, Spodoptera, Cyclic AMP-Dependent Protein Kinases, Catalysis, Cell Line, Substrate Specificity, Enzyme Activation, Iodine Radioisotopes, Cross-Linking Reagents, beta-Adrenergic Receptor Kinases, Cricetinae, Animals, Amino Acid Sequence, Cloning, Molecular, Baculoviridae, Phospholipids
Azides, Protein Conformation, Cell Membrane, Molecular Sequence Data, Spodoptera, Cyclic AMP-Dependent Protein Kinases, Catalysis, Cell Line, Substrate Specificity, Enzyme Activation, Iodine Radioisotopes, Cross-Linking Reagents, beta-Adrenergic Receptor Kinases, Cricetinae, Animals, Amino Acid Sequence, Cloning, Molecular, Baculoviridae, Phospholipids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |