Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Porcine m2 Muscarinic Acetylcholine Receptor-Effector Coupling in Chinese Hamster Ovary Cells

Authors: W K, Vogel; V A, Mosser; D A, Bulseco; M I, Schimerlik;

Porcine m2 Muscarinic Acetylcholine Receptor-Effector Coupling in Chinese Hamster Ovary Cells

Abstract

The relationship between porcine m2 muscarinic receptor coupling to inhibition of cAMP formation and stimulation of phosphatidylinositol metabolism in Chinese hamster ovary cells was examined. Reduction of the number of receptors per cell with the slowly dissociating antagonist (-)-quinuclidinyl benzilate caused a decrease in maximal response with no effect on EC50 for coupling to phosphatidylinositol metabolism. Inhibition of cAMP formation showed the opposite dependence with no effect on maximal response but an increase in EC50 value as receptor density decreased. Pilocarpine appeared to be a partial agonist at low cell receptor density but displayed full agonism at higher receptor density. These results are compatible with a two-state model describing m2 muscarinic receptor acting via two different G proteins. This model is compatible with observations of negative antagonism where antagonists stimulated cAMP formation in adenylyl cyclase inhibition assays, and can also be used to estimate receptor affinities for G proteins in systems which display negative antagonism.

Related Organizations
Keywords

Swine, CHO Cells, Thionucleotides, Phosphatidylinositols, Guanosine Diphosphate, Models, Biological, Receptors, Muscarinic, GTP-Binding Proteins, Cricetinae, Cyclic AMP, Animals, Calcium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Average
Top 10%
Top 10%
gold