Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1991 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RNase-like domain in DNA-directed RNA polymerase II.

Authors: Mitiko Go; Tsuyoshi Shirai;

RNase-like domain in DNA-directed RNA polymerase II.

Abstract

DNA-directed RNA polymerase is responsible for gene expression. Despite its importance, many details of its function and higher-order structure still remain unknown. We report here a local sequence similarity between the second largest subunit of RNA polymerase II and bacterial RNases Ba (barnase), Bi, and St. The most remarkable similarity is that the catalytic sites of the RNases are shared with the eukaryotic RNA polymerase II subunits of Drosophila melanogaster and Saccharomyces cerevisiae. Several amino acids conserved among the RNases and the RNase-like domains of the RNA polymerase subunits are located in the neighborhood of the catalytic sites of barnase, whose three-dimensional structure has been resolved. This observation suggests the functional importance of the RNase-like domain of the RNA polymerase subunits and indicates that the RNase-like domain may have RNase activity. The location of the RNase-like domain relative to the region necessary for RNA polymerization is similar to the relative proximity of 5'----3' or 3'----5' exonuclease and the region of polymerase activity of DNA polymerase I. The RNase-like domain might work in proofreading, as in RNA-directed RNA polymerase of influenza virus, or it may contribute to RNA binding through an unknown function.

Related Organizations
Keywords

Macromolecular Substances, Protein Conformation, Molecular Sequence Data, Bacillus, Saccharomyces cerevisiae, Biological Evolution, Models, Structural, Drosophila melanogaster, Ribonucleases, Bacterial Proteins, Sequence Homology, Nucleic Acid, Animals, Amino Acid Sequence, RNA Polymerase II

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
hybrid
Related to Research communities