Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1989 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase.

Authors: H, Kato; T, Fukuda; C, Parkison; P, McPhie; S Y, Cheng;

Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase.

Abstract

A cDNA clone encoding a human cytosolic thyroid hormone-binding protein (p58) has been isolated. The human sequence was found to be homologous to that of rat pyruvate kinase (EC 2.7.1.40) subtype M2. p58 is a monomer that has approximately 5% the enzymatic activity of the tetrameric pyruvate kinase M2. The tetrameric M2 does not bind 3,3',5-triiodo-L-thyronine (T3). Binding of p58 to T3 and its analogs resulted in the inhibition of its pyruvate kinase activity. The apparent Ki values of T3, L-thyroxine, and D-T3 are 30 nM, 100 nM, and 2 mM, respectively. L-Thyronine and 3,3',5'-triiodo-L-thyronine had no effect. This order of activity correlates with the thermogenic effects reported for T3 and its analogs. Conversion of p58 to the tetramer is reversible and is under the control of fructose 1,6-bisphosphate. The conversion is inhibited by T3 in a dose-dependent manner. Since pyruvate kinase is a key enzyme in regulating cellular ADP, ATP, and pyruvate, our findings suggest that p58 may be involved in mediating some of the cellular metabolic effects induced by thyroid hormones.

Keywords

Base Sequence, Macromolecular Substances, Molecular Sequence Data, Pyruvate Kinase, Restriction Mapping, Membrane Proteins, DNA, Peptide Fragments, Cell Line, Neoplasm Proteins, Rats, Cytosol, Protein Biosynthesis, Carcinoma, Squamous Cell, Animals, Humans, Amino Acid Sequence, Cyanogen Bromide, RNA, Messenger, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
hybrid