Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1979 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Inverted repeats in chloroplast DNA from higher plants

Authors: R, Kolodner; K K, Tewari;

Inverted repeats in chloroplast DNA from higher plants

Abstract

The circular chloroplast DNAs from spinach, lettuce, and corn plants have been examined by electron microscopy and shown to contain a large sequence repeated one time in reverse polarity. The inverted sequence in spinach and lettuce chloroplast DNA has been found to be 24,400 base pairs long. The inverted sequence in the corn chloroplast DNA is 22,500 base pairs long. Denaturation mapping studies have shown that the structure of the inverted sequence is highly conserved in these three plants. Pea chloroplast DNA does not contain an inverted repeat. All of the circular dimers of pea chloroplast DNA are found to be in a head-to-tail confirmation. Circular dimers of spinach and lettuce were also found to have head-to-tail conformation. However, approximately 70-80% of the circular dimers in preparations of lettuce and spinach chloroplast DNA were found to be in a head-to-head conformation. We propose that the head-to-head circular dimers are formed by a recombination event between two circular monomers in the inverted sequence.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    221
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
221
Top 1%
Top 1%
Top 1%
bronze