Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Does heterochromatin protein 1 always follow code?

Authors: Yuhong, Li; Dawn A, Kirschmann; Lori L, Wallrath;

Does heterochromatin protein 1 always follow code?

Abstract

Heterochromatin protein 1 (HP1) is a conserved chromosomal protein that participates in chromatin packaging and gene silencing. A loss of HP1 leads to lethality in Drosophila and correlates with metastasis in human breast cancer cells. On Drosophila polytene chromosomes HP1 is localized to centric regions, telomeric regions, in a banded pattern along the fourth chromosome, and at many sites scattered throughout the euchromatic arms. Recently, one mechanism of HP1 chromosome association was revealed; the amino-terminal chromo domain of HP1 interacts with methylated lysine nine of histone H3, consistent with the histone code hypothesis. Compelling data support this mechanism of HP1 association at centric regions. Is this the only mechanism by which HP1 associates with chromosomes? Interest is now shifting toward the role of HP1 within euchromatic domains. Accumulating evidence in Drosophila and mammals suggests that HP1 associates with chromosomes through interactions with nonhistone chromosomal proteins at locations other than centric heterochromatin. Does HP1 play a similar role in chromatin packaging and gene regulation at these sites as it does in centric heterochromatin? Does HP1 associate with the same proteins at these sites as it does in centric heterochromatin? A first step toward answering these questions is the identification of sequences associated with HP1 within euchromatic domains. Such sequences are likely to include HP1 “target genes” whose discovery will aid in our understanding of HP1 lethality in Drosophila and metastasis of breast cancer cells.

Related Organizations
Keywords

Gene Expression Regulation, Chromosomal Proteins, Non-Histone, Animals, Drosophila Proteins, Drosophila

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research