Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emergence of metachronal waves in cilia arrays

Authors: Elgeti, J.; Gompper, G.;

Emergence of metachronal waves in cilia arrays

Abstract

Propulsion by cilia is a fascinating and universal mechanism in biological organisms to generate fluid motion on the cellular level. Cilia are hair-like organelles, which are found in many different tissues and many uni- and multicellular organisms. Assembled in large fields, cilia beat neither randomly nor completely synchronously—instead they display a striking self-organization in the form of metachronal waves (MCWs). It was speculated early on that hydrodynamic interactions provide the physical mechanism for the synchronization of cilia motion. Theory and simulations of physical model systems, ranging from arrays of highly simplified actuated particles to a few cilia or cilia chains, support this hypothesis. The main questions are how the individual cilia interact with the flow field generated by their neighbors and synchronize their beats for the metachronal wave to emerge and how the properties of the metachronal wave are determined by the geometrical arrangement of the cilia, like cilia spacing and beat direction. Here, we address these issues by large-scale computer simulations of a mesoscopic model of 2D cilia arrays in a 3D fluid medium. We show that hydrodynamic interactions are indeed sufficient to explain the self-organization of MCWs and study beat patterns, stability, energy expenditure, and transport properties. We find that the MCW can increase propulsion velocity more than 3-fold and efficiency almost 10-fold—compared with cilia all beating in phase. This can be a vital advantage for ciliated organisms and may be interesting to guide biological experiments as well as the design of efficient microfluidic devices and artificial microswimmers.

Related Organizations
Keywords

info:eu-repo/classification/ddc/000, Animals, Computer Simulation, Cilia, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    333
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
333
Top 1%
Top 1%
Top 1%
Green
bronze