
pmid: 17267608
pmc: PMC1785359
Most restriction endonucleases use Mg 2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively.
570, Binding Sites, Esterification, Hydrolysis, Bacillus, DNA, DNA Restriction Enzymes, Catalysis, 620, Phospholipase D, Nucleic Acid Conformation, Deoxyribonucleases, Type II Site-Specific
570, Binding Sites, Esterification, Hydrolysis, Bacillus, DNA, DNA Restriction Enzymes, Catalysis, 620, Phospholipase D, Nucleic Acid Conformation, Deoxyribonucleases, Type II Site-Specific
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
