
Understanding the mechanism of fast transitions between conformed states of large biomolecules is central to reconciling the dichotomy between the relatively high speed of metabolic processes and slow (random-walk based) estimates on the speed of biomolecular processes. Here we use the dynamical systems approach to suggest that the reduced time of transition between different conformations is due to features of the dynamics of molecules that are a consequence of their structural features. Long-range and local effects both play a role. Long-range molecular forces account for the robustness of final states and nonlinear processes that channel localized, bounded disturbances into collective, modal motions. Local interconnections provide fast transition dynamics. These properties are shared by a class of networked systems with strong local interconnections and long-range nonlinear forces that thus exhibit flexibility and robustness at the same time.
Time Factors, Macromolecular Substances, Molecular Conformation, Models, Theoretical, Mathematics
Time Factors, Macromolecular Substances, Molecular Conformation, Models, Theoretical, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
