Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the sequencing of the human genome

Authors: Waterston, Robert H.; Lander, Eric S.; Sulston, John E.;

On the sequencing of the human genome

Abstract

Two recent papers using different approaches reported draft sequences of the human genome. The international Human Genome Project (HGP) used the hierarchical shotgun approach, whereas Celera Genomics adopted the whole-genome shotgun (WGS) approach. Here, we analyze whether the latter paper provides a meaningful test of the WGS approach on a mammalian genome. In the Celera paper, the authors did not analyze their own WGS data. Instead, they decomposed the HGP's assembled sequence into a “perfect tiling path”, combined it with their WGS data, and assembled the merged data set. To study the implications of this approach, we perform computational analysis and find that a perfect tiling path with 2-fold coverage is sufficient to recover virtually the entirety of a genome assembly. We also examine the manner in which the assembly was anchored to the human genome and conclude that the process primarily depended on the HGP's sequence-tagged site maps, BAC maps, and clone-based sequences. Our analysis indicates that the Celera paper provides neither a meaningful test of the WGS approach nor an independent sequence of the human genome. Our analysis does not imply that a WGS approach could not be successfully applied to assemble a draft sequence of a large mammalian genome, but merely that the Celera paper does not provide such evidence.

Country
United Kingdom
Related Organizations
Keywords

Chromosomes, Artificial, Bacterial, Models, Genetic, Genome, Human, Chromosomes, Human, Pair 22, Computational Biology, Reproducibility of Results, Genomics, Sequence Analysis, DNA, Physical Chromosome Mapping, Human Genome Project, Humans, Computer Simulation, Cloning, Molecular, Sequence Tagged Sites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 10%
Top 1%
Top 1%
bronze