<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1071/bi9760405
pmid: 1023857
The stability to denaturation by heat and guanidine hydrochloride of seven vertebrate (including skeletal, cardiac and smooth muscle) tropomyosins and three invertebrate tropomyosins was examined. The transition profiles were discontinuous and in many cases distinct plateaux were observed which indicated the presence of unique partially unfolded states at intermediate temperatures and guanidine hydrochloride concentrations. The denaturation by guanidine hydrochloride could be described in the majority of cases by a model in which the native state unfolds to a partially unfolded stable intermediate which then unfolds to the completely denatured state. On this basis it was possible to estimate the free energies of unfolding in water. It was shown that part of the IX-helical structure of tropomyosin is only marginally stable and the free energy of unfolding in water of this segment is less than values found for globular proteins, whereas another segment (or segments) has a stability comparable to that found for globular proteins. The stepwise unfolding may be explained in terms of the coiled-coil interactions in tropomyosin.
Protein Denaturation, Hot Temperature, Protein Conformation, Tropomyosin, Guanidines, Ostreidae, Dogs, Mollusca, Animals, Thermodynamics, Cattle, Rabbits, Amino Acids, Chickens
Protein Denaturation, Hot Temperature, Protein Conformation, Tropomyosin, Guanidines, Ostreidae, Dogs, Mollusca, Animals, Thermodynamics, Cattle, Rabbits, Amino Acids, Chickens
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |