Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thoracic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic and Cardiovascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic and Cardiovascular Surgery
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thoracic and Cardiovascular Surgery
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic balance of the aortomitral junction

Authors: Nolan T. Rice; Emmanuel Lansac; Carlos M.G. Duran; Wolfgang A. Goetz; Hashim A. Saber; Yu Shomura; Hou Sen Lim; +1 Authors

Dynamic balance of the aortomitral junction

Abstract

The aortic and mitral valves have been studied in isolation, as if their functions were independent. We hypothesized that both valves work in synchrony on the basis of the shared myocardial pump and orifice.Six sonometric crystals (7 sheep) were placed in both trigones, the midpoint of the anterior and posterior anulus, and the lateral extremities of the posterior anulus. In a separate series of animals, 3 crystals (8 sheep) were implanted in the aortic annular base of the right, left, and noncoronary sinuses of Valsalva. In an acute, open-chest model, under stable hemodynamic conditions, geometric changes were time related to simultaneous left ventricular and aortic pressures.From mid-diastole to end-systole, the mitral anulus area contracted by -16.1% +/- 1.9% (mean +/- SEM), whereas the aortic base area expanded by +29.8% +/- 3.3% during systole. The mitral anulus deformation was heterogeneous. In systole, the anterior mitral anulus expanded (intertrigonal distance, +11.5% +/- 2.3%) and the posterior mitral anulus contracted (distance between lateral extremities of the posterior anulus, -12.1% +/- 1.5%). The intertrigonal distance corresponded to the base of the left and noncoronary sinus of Valsalva, which expanded similarly during systole (+12.9% +/- 2.0%). The anteroposterior diameter of the mitral anulus was reduced twice that of the transverse diameter. This disparity of reduction can be explained by the posterior displacement of the intertrigonal area corresponding to the systolic aortic root expansion.Mitral anulus deformation is closely related to aortic root dynamics. During systole, the posterior movement of the aortic curtain allows for aortic root expansion, probably to maximize ejection, whereas during diastole, aortic root reduction participates in mitral anulus dilatation. These findings should affect mitral and aortic surgical approaches.

Keywords

Pulmonary and Respiratory Medicine, Sheep, Systole, Hemodynamics, Sensitivity and Specificity, Disease Models, Animal, Cardiovascular Diseases, Diastole, Aortic Valve, Heart Function Tests, Animals, Mitral Valve, Surgery, Cardiology and Cardiovascular Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 1%
Top 10%
hybrid