Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIP Advancesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIP Advances
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIP Advances
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

A DC electric field sensor based on optical waveguide-based field mill

Authors: Wei Song; Zhenyu Zhan; Xiaokuo Kou; Manling Dong; Xiaochuan Huang; Weifeng Xin; Zeyan Shi; +2 Authors

A DC electric field sensor based on optical waveguide-based field mill

Abstract

Based on the Pockels effect of the lithium niobate crystal, an optical field mill DC electric field sensor has been developed. The structural parameters of the rotating shield electrode are optimized by using the COMSOL Multiphysics simulation software. When the inner radius of the shield electrode r = 5 mm, the outer radius R = 25 mm, and the vertical distance between the sensing electrode and the shield electrode d = 2 mm, achieving the maximum modulation field amplitude and optimal performance. Finally, the rotating shield electrode is incorporated with an asymmetric Mach–Zehnder interferometer optical waveguide, resulting in a field mill DC electric field sensor. Experimental results show that the sensor can transfer a DC electric field into an AC electric field with a frequency of 222.2 Hz. The sensitivity of the sensor is determined to be 0.54 mV/(kV/m), with a minimum detectable electric field of 0.37 kV/m. Under a 1 dB compression condition, the maximum undistorted measurable DC electric field Emax is 179.5 kV/m.

Related Organizations
Keywords

Physics, QC1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold