Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Modeling the dynamics of circulating tumor cell clusters inside a microfluidic channel

Authors: Emmanuel I. Ezeobidi; Agnieszka Truszkowska;

Modeling the dynamics of circulating tumor cell clusters inside a microfluidic channel

Abstract

Circulating tumor cells are central to metastasis, a particularly malign spread of cancer beyond its original location. While rare, there is growing evidence that the clusters of circulating tumor cells are significantly more harmful than individual cells. Microfluidic platforms constitute the core of circulating tumor cell cluster research, allowing cluster detection, analysis, and treatment. In this work, we propose a new mathematical model of circulating tumor cell clusters and apply it to simulate the dynamics of the aggregates inside a microfluidic channel with the external flow of a fluid. We leverage our previous model of the interactions of circulating tumor cells with varying clustering affinities and introduce explicit bonds between the cells that makeup a cluster. We show that the bonds have a visible impact on the cluster dynamics and that they enable the reproduction of known cluster flow and deformation patterns. Furthermore, we demonstrate that the dynamics of these aggregates are sensitive to bond properties, as well as initialization and flow conditions. We believe that our modeling framework represents a valuable mesoscopic formulation with an impact beyond circulating tumor cell clusters, as cell aggregates are common in both nature and applications.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!