Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ APL Bioengineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
APL Bioengineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
APL Bioengineering
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

Photothermal therapy using graphene quantum dots

Authors: Mohammad Suhaan Dar; Tanveer A. Tabish; Nanasaheb D. Thorat; G. Swati; Niroj Kumar Sahu;

Photothermal therapy using graphene quantum dots

Abstract

The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.

Related Organizations
Keywords

Medical technology, Reviews, R855-855.5, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 1%
Green
gold
Related to Research communities