
Most atomic physics experiments are controlled by a digital pattern generator used to synchronize all equipment by providing triggers and clocks. Recently, the availability of well-documented open-source development tools has lifted the barriers to using programmable systems on chip (PSoCs), making them a convenient and versatile tool for synthesizing digital patterns. Here, we take advantage of these advancements in the design of a versatile clock and pattern generator using a PSoC. We present our design with the intent of highlighting the new possibilities that PSoCs have to offer in terms of flexibility. We provide a robust hardware carrier and basic firmware implementation that can be expanded and modified for other uses.
Quantum Physics, Physics - Instrumentation and Detectors, Atomic Physics (physics.atom-ph), FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det), Quantum Physics (quant-ph), Physics - Atomic Physics
Quantum Physics, Physics - Instrumentation and Detectors, Atomic Physics (physics.atom-ph), FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det), Quantum Physics (quant-ph), Physics - Atomic Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
