<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Piezoelectric acoustic transducers consisting of a circular aluminum nitride and silicon nitride unimorph diaphragm and an encapsulated air-filled back cavity are reported. Analytical and finite element analysis models are used to design the transducer to achieve low minimum detectable pressure (MDP) within chosen size restrictions. A series of transducers with varying radii are fabricated using microelectromechanical systems (MEMS) techniques. Experimental results are reported for a transducer with a 175 μm radius on a 400 × 500 × 500 μm3 die exhibiting structural resonances at 552 kHz in air and 133 kHz in water. The low-frequency (10 Hz–50 kHz) sensitivity is 1.87 μV/Pa (−114.5 dB re 1 V/Pa) in both air and water. The sensor has an MDP of 43.7 mPa/Hz (67 dB SPL) at 100 Hz and 10.9 mPa/Hz (55 dB SPL) at 1 kHz. This work contributes a set of design rules for MEMS piezoelectric diaphragm transducers that focuses on decreasing the MDP of the sensor through size, material properties, and residual stress considerations.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |