Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Scanning tunneling and atomic force microscopy combined

Authors: P. J. Bryant; R. G. Miller; R. Yang;

Scanning tunneling and atomic force microscopy combined

Abstract

The technique described here provides scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in one instrument. Both STM and AFM operations are accomplished by the same device applied to the same sample area. The same metallic probe interacts with the sample in both modes of operation. Switching from STM to AFM can occur automatically or on command. Images can be recorded separately or in several combined modes and directly compared. Electronic and geometric contributions are identifiable in the separate and combined images. Conductors, semiconductors, and insulators may be investigated. Representative images of each are shown.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!