
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The forwards approach to galaxy formation and evolution is extremely powerful but leaves several questions unanswered. Foremost among these is the origin of disks. A backwards approach is able to provide a more realistic treatment of star formation and feedback and provides a practical guide to eventually complement galaxy formation ab initio.
11 pages with 2 figures, to appear in "After the Dark Ages: When Galaxies were Young", proceedings of the 9th annual October Astrophysics Conference, ed. S. Holt and E. Smith, simulated images available at http://astro.berkeley.edu/~bouwens/simulation.html
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
