
arXiv: quant-ph/9803050
We use a semiclassical approximation to derive the partition function for an arbitrary potential in one-dimensional Quantum Statistical Mechanics, which we view as an example of finite temperature scalar Field Theory at a point. We rely on Catastrophe Theory to analyze the pattern of extrema of the corresponding path-integral. We exhibit the propagator in the background of the different extrema and use it to compute the fluctuation determinant and to develop a (nonperturbative) semiclassical expansion which allows for the calculation of correlation functions. We discuss the examples of the single and double-well quartic anharmonic oscillators, and the implications of our results for higher dimensions.
Invited talk at the La Plata meeting on `Trends in Theoretical Physics', La Plata, April, 1997; 14 pages + 5 ps figures. Some cosmetical modifications, and addition of some references which were missing in the previous version
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
