Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 1996 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1063/1.5274...
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Dispersed T Tauri stars and galactic star formation

Authors: Eric D. Feigelson;

Dispersed T Tauri stars and galactic star formation

Abstract

The spatial distribution, age distribution and kinematics of T Tauri stars, both close to and widely distributed around active clouds, are considered using simple models of T Tauri dispersal. Models are compared to observations in and around the nearby cloud complexes, in particular the recent discovery of widely scattered young stars from the ROSAT All-Sky Survey. We suggest the dispersal of T Tauri stars has two major causes: slow isotropic drifting of stars away from long-lived star forming clouds, and star formation in short-lived rapidly moving cloudlets associated with large-scale turbulent motions of molecular cloud complexes. A third mechanism for dispersal, dynamical ejection of high velocity T Tauri stars, appears to be less important. Other implications include: star formation in at least one cloud (Chamaeleon I) has been continuous for ≃20 Myr; star formation efficiencies of clouds may often be 20% or higher; a large fraction of low-mass stars may form in small shoft-lived cloudlets each produ...

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
gold