Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Chemical Physics
Article
License: CC BY ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY ND
Data sources: UnpayWall
The Journal of Chemical Physics
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1101/409482...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinetic network model to explain gain-of-function mutations in ERK2 enzyme

Authors: Misiura, M.; Kolomeisky, A. B.;

Kinetic network model to explain gain-of-function mutations in ERK2 enzyme

Abstract

ERK2 is a kinase protein that belongs to a Ras/Raf/MEK/ERK signaling pathway, which is activated in response to a range of extracellular signals. Malfunctioning of this cascade leads to a variety of serious diseases, including cancers. This is often caused by mutations in proteins belonging to the cascade, frequently leading to abnormally high activity of the cascade even in the absence of an external signal. One such “gain-of-function” mutation in the ERK2 protein, called a “sevenmaker” mutation (D319N), was discovered in 1994 in Drosophila. The mutation leads to disruption of interactions of other proteins with the D-site of ERK2 and results, contrary to expectations, in an increase of its activity in vivo. However, no molecular mechanism to explain this effect has been presented so far. The difficulty is that this mutation should equally negatively affect interactions of ERK2 with all substrates, activators, and deactivators. In this paper, we present a semiquantitative kinetic network model that gives a possible explanation of the increased activity of mutant ERK2 species. A simplified biochemical network for ERK2, viewed as a system of coupled Michaelis-Menten processes, is presented. Its dynamic properties are calculated explicitly using the method of first-passage processes. The effect of mutation is associated with changes in the strength of interaction energy between the enzyme and the substrates. It is found that the dependence of kinetic properties of the protein on the interaction energy is nonmonotonic, suggesting that some mutations might lead to more efficient catalytic properties, despite weakening intermolecular interactions. Our theoretical predictions agree with experimental observations for the sevenmaker mutation in ERK2. It is also argued that the effect of mutations might depend on the concentrations of substrates.

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Kinetics, Models, Chemical, Gain of Function Mutation, Biocatalysis, Animals, Drosophila, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid