Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/abs...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1063/1.4815...
Article . 1995 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1994
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hadronic molecules and low-energy hadron-hadron scattering amplitudes

Authors: T. Barnes;

Hadronic molecules and low-energy hadron-hadron scattering amplitudes

Abstract

Recently there has been considerable interest in the subject of molecules, which are weakly bound states of hadron pairs. The question of the existence of molecules is closely related to the more general problem of the determination of low energy hadron-hadron scattering amplitudes, which is widely believed to require nonperturbative methods. In this contribution we report on quark model calculations using a simple perturbative scattering mechanism, one gluon exchange followed by constituent interchange. We refer to the associated diagrams as ``quark Born diagrams". For the cases chosen to isolate this mechanism, I=2 $����$, I=3/2 K$��$ and KN the results are usually in good agreement with experimental S-wave scattering amplitudes given standard potential model parameters, and for NN we find perturbative results very similar to the nonperturbative hard cores of Oka and Yazaki. We also discuss our findings for other less familiar channels; these include predictions of vector-vector bound states, one of which may be the $��(1710)$.

(Expanded version of results presented at Few Body XIV, Williamsburg, Virginia, 26-31 May 1994), LATEX using epsfig and wrapfig. postscript file incorporating figures available by anonymous ftp to COMPSCI.CAS.VANDERBILT.EDU, subdirectory QSM, file fbpp.ps

Related Organizations
Keywords

High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green