Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of crystal growth from Lennard-Jones solutions

Authors: B. van Hengstum; J.P. van der Eerden; H. E. A. Huitema;

Simulation of crystal growth from Lennard-Jones solutions

Abstract

We simulate crystal growth from solution using the Monte Carlo method in the semigrand-isobaric–isothermal ensemble. All crystals are grown in the face-centered-cubic (100) direction, while varying the solubility and temperature. This enables us to change the growth mode from linear to nonlinear. In order to simulate at time scales necessary for growth from solution, we devised and used smart Monte Carlo moves. These moves enhance the solute–solvent interdiffusion processes, similar to convection in experimental situations, while leaving the kinetics in the adsorption layer between the crystal and the solution unaffected. These kinetics then become the rate determining step. The structure and dynamics of the interfacial region is investigated quantitatively, leading to the conclusion that especially during rough, three-dimensional growth, trapping of solvent particles in newly grown crystal layers is the rate determining process.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?