Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PolyPubliearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 1998
Data sources: PolyPublie
The Journal of Chemical Physics
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Nonlinear and Hamiltonian extended irreversible thermodynamics

Authors: M. Grmela; D. Jou; J. Casas-Vázquez;

Nonlinear and Hamiltonian extended irreversible thermodynamics

Abstract

Our aim is to formulate hydrodynamicslike theory for the fluids for which the classical hydrodynamics fails (e.g., polymeric fluids). In addition, we limit ourselves in this paper to the fluids for which the enlarged set of classical hydrodynamic fields, enlarged by the fields of the extra stress tensor and the extra energy flux, represent a dynamically closed set of state variables. We say, roughly speaking, that a set of state variables is dynamically closed if predictions calculated from the dynamical theory that uses this set of state variables agree, to some extent, with results of hydro- dynamicslike (rheological) observations. Examples of such fluids can be found in Jou et al., [Extended Irreversible Thermodynamics (Springer, Berlin, 1996)]. In this book the hydro- dynamicslike theory whose consequences are compared with results of observations is linear in the fields that extend the set of classical hydrodynamic fields. In this paper we extend the linear theory to a fully nonlinear theory. The additional physical insight that makes the extension possible is the requirement of a generalized Hamiltonian structure. This structure has been identified in all dynamical theories (on all levels of description, including, for example, kinetic theory) that describe the time evolution of externally unforced fluids (i.e., fluids that eventually reach equilibrium states at which they can be well described by equilibrium thermodynamics). A prominent new feature of the nonlinear theory is that the extra fields extending the set of classical hydrodynamical fields are not exactly the fields of the extra stress and the extra energy flux, but new fields from which the extra stress and the extra energy flux can always be calculated. The inverse of this map exists, however, always only in the linear case.

Country
Canada
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!