Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://elar.urfu.ru...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1063/1.4759...
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iron environment non-equivalence in both octahedral and tetrahedral sites in NiFe[sub 2]O[sub 4] nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution

Authors: Oshtrakh, M. I.; Ushakov, M. V.; Senthilkumar, B.; Selvan, R. Kalai; Sanjeeviraja, C.; Semionkin, V. A.;

Iron environment non-equivalence in both octahedral and tetrahedral sites in NiFe[sub 2]O[sub 4] nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution

Abstract

Mossbauer spectrum of NiFe2O4 nanoparticles was measured at room temperature in 4096 channels. This spectrum was fitted using various models, consisting of different numbers of magnetic sextets from two to twelve. Non-equivalence of the 57Fe microenvironments due to various probabilities of different Ni2+ numbers surrounding the octahedral and tetrahedral sites was evaluated and at least 5 different microenvironments were shown for both sites. The fit of the Mossbauer spectrum of NiFe2O4 nanoparticles using ten sextets showed some similarities in the histograms of relative areas of sextets and calculated probabilities of different Ni2+ numbers in local microenvironments.

Country
Russian Federation
Keywords

57FE IN OCTAHEDRAL AND TETRAHEDRAL SITES., HYPERFINE PARAMETERS, MÖSSBAUER SPECTROSCOPY, NICKEL FERRITE NANOPARTICLES

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
Green