<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1063/1.474147
In this paper, a simplified model was used to describe the interactions between the enantiomers in a scalemic mixture. Monte Carlo simulations were performed to determine several thermodynamic properties as a function of temperature and mole fraction of solid, liquid, and gas phase. Phase diagrams were constructed using a macroscopic thermodynamic program, PROPHASE. The model consists of spherical D and L molecules interacting via modified Lennard–Jones potentials (σDD=σLL, εDD=εLL, εDL=eεDD, and σDL=sσDD.) The two heterochiral interaction parameters, e and s, were found to be sufficient to produce all types of phase diagrams that have been found for these systems experimentally. Conglomerates were found when the heterochiral interaction strength was smaller than the homochiral value, e<1. A different heterochiral interaction distance, s≠1, led to racemic compounds, with an ordered distribution of D and L molecules. The CsCl-structured compound was found to be stable for short DL interactions, s<1 (e=1), with an enantiotropic transition to a solid solution for s=0.96. Longer heterochiral distances, s>1, result in the formation of layered fcc compounds. The liquid regions in the phase diagram become larger for s≠1, caused by a strong decrease of the melting point for s<1 and s>1, in combination with only a small effect on the boiling point for s<1, and even an increase of the boiling point for s>1. Segregation into two different solid solutions, one with low mole fraction and the other one close to x=0.25, was obtained for these mixtures as well.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |