
arXiv: physics/9610015
A new formalism for the optimal control of quantum mechanical physical observables is presented. This approach is based on an analogous classical control technique reported previously [J. Botina, H. Rabitz, and N. Rahman, J. Chem. Phys. 102, 226 (1995)]. Quantum Lagrange multiplier functions are used to preserve a chosen subset of the observable dynamics of interest. As a result, a corresponding small set of Lagrange multipliers needs to be calculated and they are only a function of time. This is a considerable simplification over traditional quantum optimal control theory [S. Shi and H. Rabitz, Comp. Phys. Comm. 63, 71 (1991)]. The success of the new approach is based on taking advantage of the multiplicity of solutions to virtually any problem of quantum control to meet a physical objective. A family of such simplified formulations is introduced and numerically tested. Results are presented for these algorithms and compared with previous reported work on a model problem for selective unimolecular reaction induced by an external optical electric field.
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
