<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We developed a new physical model to predict macroscopic properties of inorganic molten systems using a realistic description of inter-atomic interactions. Unlike the conventional approach, which tends to overestimate viscosity by several times, our systems consist of a set of ions with an admixture of neutral atoms. The neutral atom subsystem is a consequence of the covalent/ionic state reduction, occurring in the liquid phase. Comparison of the calculated macroscopic properties (shear viscosity and self-diffusion constants) with the experiment demonstrates good performance of our model. The presented approach is inspired by a significant degree of covalent interaction between the alkali and chlorine atoms, predicted by the coupled cluster theory.
Chemical Physics (physics.chem-ph), Condensed Matter - Materials Science, Physics - Chemical Physics, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Chemical Physics (physics.chem-ph), Condensed Matter - Materials Science, Physics - Chemical Physics, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |