Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potential inversion via variational generalized inverse

Authors: Dong H. Zhang; John C. Light;

Potential inversion via variational generalized inverse

Abstract

The determination of potential energy surfaces (PES) from values calculated ab initio at a set of points or from spectral data (vibration–rotation energy level information and rotation constants) are important and often difficult problems. The former is a ‘‘potential interpolation’’ problem, the latter a ‘‘potential inversion’’ problem. These are indeterminate problems in which the known data is insufficient to yield a unique solution. We present here a new constrained variational approach to the direct solution of these problems. The constraints are the known exact values of the potential or the exact perturbation corrections desired. The variational functional is chosen to provide control of the magnitude and smoothness of the correction function or potential. The method is very simple, very fast computationally, and yields exact solutions to the perturbation or interpolation equations in a single application. The potential inversion is completed by iteration to converge the perturbation solutions for a given set of assigned levels, and then by repeating with additional levels assigned in sequence to the data set to yield a physically acceptable PES very quickly. This procedure yields a smooth PES from which the energy levels in the dataset are calculated exactly. Information on rotational constants may also be used. Both interpolation and inversion procedures are applied to the the two dimensional (R,θ) PES for ArOH(A 2Σ+). A combined application of these two procedures is also presented in the paper, where we first interpolate a PES from ab initio points and then correct the ab initio fitted surfaces using spectral data.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!