Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Pseudospectral generalized valence-bond calculations: Application to methylene, ethylene, and silylene

Authors: Jean-Marc Langlois; Richard P. Muller; Terry R. Coley; William A. Goddard; Murco N. Ringnalda; Youngdo Won; Richard A. Friesner;

Pseudospectral generalized valence-bond calculations: Application to methylene, ethylene, and silylene

Abstract

The pseudospectral (PS) method for self-consistent-field calculations is extended for use in generalized valence-bond calculations and is used to calculate singlet–triplet excitation energies in methylene, silylene, and ethylene molecules and bond dissociation and twisting energies in ethylene. We find that the PS calculations lead to an accuracy in total energies of ≤0.1 kcal/mol and excitation energies to ≤0.01 kcal/mol for all systems. With effective core potentials on Si, we find greatly improved accuracy for PS.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!