Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photothermal mirage characterization of vertical interfaces separating two different media

Authors: A. Ocariz; Agustín Salazar; Ph. Forge; Agustín Sánchez-Lavega;

Photothermal mirage characterization of vertical interfaces separating two different media

Abstract

A theoretical and experimental study about the ability of the photothermal modulated mirage technique to characterize vertical interfaces (thermal resistances) separating two different opaque and thermally thick media with thermal conductivities larger than the medium surrounding the sample and with any value in their thermal diffusivities has been carried out. For the calculation of the mirage deflection, a theoretical model that incorporates the mirage parameters (sizes of probe and pump beams, probe beam height) and which is valid for any value of the thermal resistance characterizing the interface is presented. The model is validated by experimental measurements on a fabricated sample having a controlled interface width that separates two pieces of copper and steel. Fitting the model calculations and the experimental data allows one to retrieve the value of the thermal resistance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?